Air through perfection
Linear diffuser
\square

ACP

Architectural diffusers

Linear diffuser WING

Description

WING is an architectural, linear diffuser, used to introduce or evacuate air.
The diffuser is both an elegant and practical ventilation solution.
WING integrates fully into the ceiling and is recommended for residential spaces, conference rooms, offices, classrooms, etc.

Technical specifications

Characteristics

The diffuser is made with 1 to 4 slots with a width of 19 mm and is equipped with adjustable blades.
The diffuser blades allow to adjust the airflow.
Long-length diffusers have segmented blades at a maximum size of 1500 mm
For a uniform appearance of the enclosures, the WING diffuser can also be used for air evacuation.
Dimensional limits of diffuser length: minimum 0.3 m and maximum 3 m .
In the case of diffusers with a length > 3m, the execution is modular, and the product is delivered together with the necessary connecting parts.

Depending on the overall position, the modular parts are built without termination elements (caps), or with a single element - see assembly sections.

Perimeter configurations can be made by using corner sections (angle 90°).
Corner elements are inactive.
The product is delivered with the following elements: "U" type mounting system (bracket) and fixing screw. The number of mounting systems depends on the length of the product.

Materials

The diffuser is made of extruded aluminum profiles.

Available finishes:

- LN - standard finish - outer frame and blades in black anodized aluminum. For diffusers with 2-4 slots, the inner frame is made of aluminum painted RAL 9016 glossy
- LV - optional finish - diffuser painted in electrostatic field in any shade from the RAL palette. The surface on which the finishing adhesive will be applied will remain unpainted.

Technical drawing

S $[\mathrm{mm}]$	No. of slots	Hext $[\mathrm{mm}]$	Hint $[\mathrm{mm}]$	W $[\mathrm{mm}]$
19	1	69	40.5	219
	2	108	79.5	258
	3	147	118.5	297
	4	186	157.5	336

$A \subset P$

WING - 90॰ angle

Product specifications

1 - Fixing screw
2 - WING diffuser
3 - Bracket ("U" type system)
4 - Plenum box (optional)

ACP

Long-length diffusers have segmented blades at a maximum size of 1500 mm . This makes it easier to adjust the diffuser blades to achieve the desired adjustment.

A

Positioning the blades

Direction of air jet to the left

Blades open

Direction of air jet to the right

Blades closed

Section assembly

Long-length (large dimension) diffusers are made of modules with a maximum length of 3 m .
In this case, the product is delivered with connecting elements between modules.

H - Sections assembly detail

ACP

Accessories

The diffuser can be supplied with a plenum connecting to a circular duct with horizontal connection.
The plenum is provided with suspension elements (lugs) and bead roll on the spigot, for easy fixing of the flexible duct.

The plenum is delivered insulated or uninsulated.
Optionally, a perforated damper can be mounted on the plenum connection to balance the air flow.

Adapter (plenum box)

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{A}}=\mathrm{L}_{\text {WING }}+4 \\
& \mathrm{H} 1=\mathrm{Hint}_{\text {WING }}+2 \\
& \mathrm{H} 2=\mathrm{H} 1+16 \\
& \mathrm{H}-\text { depending on } \varnothing \mathrm{D}
\end{aligned}
$$

The adapter is made of $\mathrm{Z140}$ galvanized steel sheet and is equipped with suspension lugs.

W-Suspension lug

On request, the plenum can be insulated with 6 mm thick elastomeric rubber.

AN - Uninsulated adapter

AIZ - Insulated adapter

The perforated damper is mounted on the adapter spigot and has the role of balancing the air flow.

Functional parameters

Air flow [$\mathrm{m}^{3} / \mathrm{h}$]	Slots no. $\mathrm{Ak}\left[\mathrm{~m}^{2}\right]$	$\begin{gathered} \mathbf{1} \\ 0.019 \end{gathered}$
Length $=1000 \mathrm{~mm}$		
33	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 1.00 \\ 1.00 \\ - \\ 0.98 \end{gathered}$
67	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 2.00 \\ 2.00 \\ - \\ 4.02 \\ \hline \end{gathered}$
106	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 4.00 \\ 3.00 \\ 15.00 \\ 9.22 \\ \hline \end{gathered}$
140	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 5.00 \\ 4.00 \\ 21.00 \\ 16.18 \\ \hline \end{gathered}$
173	X [m] (Horizontally) X [m] (Vertically) $\mathrm{NR}[\mathrm{dB}(\mathrm{A})]$ $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 5.00 \\ 4.00 \\ 27.00 \\ 25.40 \end{gathered}$
206	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 6.00 \\ 5.00 \\ 31.00 \\ 36.38 \\ \hline \end{gathered}$
240	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 7.00 \\ 5.00 \\ 35.00 \\ 49.52 \end{gathered}$
279	X [m] (Horizontally) X [m] (Vertically) $\mathrm{NR}[\mathrm{dB}(\mathrm{A})]$ $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 7.00 \\ 5.00 \\ 38.00 \\ 64.72 \end{gathered}$
312	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 8.00 \\ 5.00 \\ 41.00 \\ 82.18 \end{gathered}$

Air flow [$\mathrm{m}^{3 / h}$]	Slots no. $\mathrm{Ak}\left[\mathrm{~m}^{2}\right]$	$\begin{gathered} 2 \\ 0.038 \end{gathered}$
Length $=1000 \mathrm{~mm}$		
67	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 1.00 \\ 1.00 \\ - \\ 0.98 \end{gathered}$
140	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 3.00 \\ 3.00 \\ - \\ 4.02 \\ \hline \end{gathered}$
206	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 5.00 \\ 4.00 \\ 18.00 \\ 9.22 \end{gathered}$
279	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 7.00 \\ 5.00 \\ 24.00 \\ 16.18 \end{gathered}$
346	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 8.00 \\ 6.00 \\ 30.00 \\ 25.40 \end{gathered}$
413	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 9.00 \\ 6.00 \\ 34.00 \\ 36.38 \end{gathered}$
485	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 9.00 \\ 7.00 \\ 38.00 \\ 49.52 \end{gathered}$
552	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 10.00 \\ 7.00 \\ 41.00 \\ 64.72 \end{gathered}$
625	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 11.00 \\ 8.00 \\ 44.00 \\ 82.18 \end{gathered}$

Air flow $\left[m^{3} / h\right]$	Slots no. $\mathrm{Ak}\left[\mathrm{m}^{2}\right]$	$\begin{gathered} 3 \\ 0.057 \end{gathered}$
Length $=1000 \mathrm{~mm}$		
106	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 2.00 \\ 2.00 \\ - \\ 0.98 \end{gathered}$
206	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 4.00 \\ 3.00 \\ - \\ 4.02 \end{gathered}$
312	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 6.00 \\ 5.00 \\ 19.00 \\ 9.22 \end{gathered}$
413	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 8.00 \\ 6.00 \\ 26.00 \\ 16.18 \end{gathered}$
519	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 10.00 \\ 7.00 \\ 32.00 \\ 25.50 \end{gathered}$
625	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 11.00 \\ 8.00 \\ 36.00 \\ 36.38 \end{gathered}$
725	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 12.00 \\ 9.00 \\ 40.00 \\ 49.52 \end{gathered}$
831	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 12.00 \\ 9.00 \\ 43.00 \\ 64.72 \end{gathered}$
932	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{aligned} & 13.00 \\ & 10.00 \\ & 46.00 \\ & 82.18 \end{aligned}$

Air flow [$\mathrm{m}^{3} / \mathrm{h}$]	Slots no. $\mathrm{Ak}\left[\mathrm{~m}^{2}\right]$	$\begin{gathered} 4 \\ 0.076 \end{gathered}$
Length $=1000 \mathrm{~mm}$		
140	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 2.00 \\ 2.00 \\ - \\ 0.98 \end{gathered}$
279	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 5.00 \\ 4.00 \\ - \\ 4.02 \\ \hline \end{gathered}$
413	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 7.00 \\ 6.00 \\ 21.00 \\ 9.22 \\ \hline \end{gathered}$
552	X [m] (Horizontally) X [m] (Vertically) $N R[d B(A)]$ $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 10.00 \\ 7.00 \\ 27.00 \\ 16.18 \end{gathered}$
692	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 11.00 \\ 8.00 \\ 33.00 \\ 25.40 \end{gathered}$
831	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{gathered} 12.00 \\ 9.00 \\ 37.00 \\ 36.38 \end{gathered}$
971	X [m] (Horizontally) X [m] (Vertically) $N R$ [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{aligned} & 13.00 \\ & 10.00 \\ & 41.00 \\ & 49.52 \end{aligned}$
1105	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{aligned} & 14.00 \\ & 10.00 \\ & 44.00 \\ & 64.72 \end{aligned}$
1244	X [m] (Horizontally) X [m] (Vertically) NR [dB(A)] $\Delta \mathrm{Pt}[\mathrm{Pa}]$	$\begin{aligned} & 15.00 \\ & 11.00 \\ & 47.00 \\ & 82.18 \end{aligned}$

The legend
Ak [m^{2}] - The free surface
X [m] - The length of the air jet at a speed of $0.375 \mathrm{~m} / \mathrm{s}$
NR [dB (A)] - Noise level without room attenuation
$\Delta \mathrm{Pt}$ [Pa] - Pressure loss

ACP

Installation

The diffuser is mounted in a false continuous ceiling. The fixing of the plenum diffuser is done by means of " U " type mounting systems (bracket), positioned inside the plenum and the screws.

After fixing, apply gypsum plaster (adhesive) over the diffuser frame and then apply wall paint.

False continuous ceiling mounting

Order code

Example on how to place an order

